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Comprehensive study of phase transitions in relaxational systems with field-dependent coefficien
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We present a comprehensive study of phase transitions in single-field systems that relax to a nonequilibrium
global steady state. The mechanism we focus on is not the so-called Stratonovich drift combined with collec-
tive effects, but is instead similar to the one associated with noise-induced transitions in the manner of
Horsthemke-Lefever in zero-dimensional systems. As a consequence, the noise interpretation~e.g., Itô vs
Stratonovich! merely shifts the phase boundaries. With the help of a mean-field approximation, we present a
broad qualitative picture of the various phase diagrams that can be found in these systems. To complement the
theoretical analysis we present numerical simulations that confirm the findings of the mean-field theory.
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I. INTRODUCTION

Equilibrium and nonequilibrium relaxational dynamic
play an important role in many critical phenomena@1#. Typi-
cally, relaxational flows drive the evolution of the system
the equilibria determined by a Lyapunov energy functionaF
that depends on local potential functionals and on the in
actions in the system@2,3#. The celebratedf4 functional is a
paradigmatic example of such a potential functional a
gives rise to well-known equilibrium models such as the
called model A~a coarse-grained version of the Ising mod!
and model B~an archetype of phase separation dynamic!,
among others@1,2#.

Typical relaxational models describe the flow of a fie
w i(t) defined on ad-dimensional square lattice via a Lang
vin equation of the form

ẇ i~ t !52G
dF~$w%!

dw i~ t !
1G1/2j i~ t !. ~1!

Here i labels a lattice site,G is a positive constant, ($w%)
[(w1 , . . . ,wN) denotes the entire set of fields, andj i are
Gaussian white noises with zero mean and correlation fu
tions

^j i~ t !j j~ t8!&5s2d i j d~ t2t8!. ~2!

Typically, the functionalF consists of a local potentialV(w)
and an interaction term,

F~$w%!5(
i

S V~w i !1
K

8d (̂
i j &

~w j2w i !
2D , ~3!

whereK is the coupling coefficient. The leftmost sum in E
~3! runs over all lattice sites and the rightmost sum over
two-dimensional~2D! nearest neighbors of a given sitei. A
keystone in this formalism is the link~the ‘‘fluctuation-
dissipation relation’’! between the intensityGs2 of the fluc-
tuating contribution and the relaxation parameterG through
the constants2 that in equilibrium systems is proportional t
the temperature. The relaxation coefficientG affects how fast
the system relaxes to the global steady state.
1063-651X/2004/69~1!/011102~11!/$22.50 69 0111
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Recent studies have revealed the importance of fie
dependent relaxation coefficientsG(w) in the dynamics of
these systems@4#. A generic description for such systems
provided by the Langevin equation

ẇ i~ t !52G„w i~ t !…
dF~$w%!

dw i~ t !
1@G„w i~ t !…#1/2j i~ t !, ~4!

whereG(w) and@G(w)#1/2 are both positive. For example,
has been shown that relaxational flows driven by fie
dependent coefficients may presentinverted phase diagrams
where ordering effects increase with the intensity of the fl
tuations. This behavior has been observed in polymer m
tures where spinodal decomposition, i.e., phase separa
increases with increasing temperature@5#.

The importance of these flows may be even more p
nounced in nonequilibrium systems, and goes well beyo
the scenarios that lead to inverted phase diagrams. One
ample is that of pure noise-induced phase transitions@4#.
Such phase transitions exhibit the striking feature that no
is the crucial element responsible for the appearance of
dered phases that disappear in the absence of noise. The
mechanism identified in the literature leading to such beh
ior @6# relied on a combination of the so-called Stratonovi
drift that arises under this particular interpretation of t
noise and collective effects. The Stratonovich drift in the
systems leads to opposite dynamical responses at shor
long time scales. Collective effects generated by the coup
among the field elements can amplify short time instabilit
~that would die away in the absence of coupling!, thus lead-
ing to the observed noise-induced phase transitions. A
consequence, there was originally a widespread belief
noise-induced phase transitions could only be found in s
tems where there are no noise-induced transitions@7#, since
the latter transitions occur in zero-dimensional~uncoupled!
systems. Recent studies involving relaxational flows w
field-dependent relaxation coefficients have shown otherw
by presenting a system where both a transition~zero dimen-
sional! and a phase transition~coupled systems! are induced
by the same source of noise@4#. In fact, the mechanism is no
attributable to the Stratonovich drift because these transit
occur independently of the noise interpretation@8#. More-
©2004 The American Physical Society02-1
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over, the same mechanism has been extended to pattern
mation phenomena@9#, generalizing a previous mechanis
based on the Stratonovich drift@10#.

A thorough understanding of relaxational models driv
by field-dependent coefficients is therefore important fo
number of reasons. They play a relevant role in critical p
nomena, they may explain situations where inverted ph
diagrams are obtained, and they constitute a generalizatio
the seminal work of Horsthemke and Lefever on noi
induced transitions to noise-induced phase transitions
coupled systems.

Whereas specific nonequilibrium relaxational mod
driven by field-dependent coefficients have been conside
in the literature, herein we present a more general analys
such models, whereby the specific cases considered ea
become part of a broad panorama. We ask two questions~1!
What are the circumstances~features of the model, values o
the control parameters! that lead to purely noise-induce
phase transitions?~2! What is the nature of the phases th
can occur in these systems, and what are the features o
model that determine these phases? In answering these
tions, we discuss the possible phase diagrams that ca
obtained and show that their overall structure depends
geometrical properties such as the balance of convexitie
the local potentials and of the field-dependent coefficie
Furthermore, we show how multistability can be induced
noise. Our point of departure for this analysis is the equa
obtained by implementing the functional derivative ofF in-
dicated in Eq.~4!,

ẇ i~ t !5G~w i !S 2
]V~w i !

]w i
1Lw i D1@G~w i !#

1/2j i~ t !, ~5!

L being the discrete version of the diffusion Laplacian o
erator,

Lw i5
K

2d (̂
i j &

~w j2w i !. ~6!

The paper is organized as follows. In Sec. II we constr
the mean-field approximation to Eq.~5! and establish the
different phases that may appear in the model. A discus
of the possible phase boundaries between these phase
the order of the transitions are presented in Sec. III. T
structure of the resulting phase diagrams is presented in
IV, as is a specific illustration that corroborates our mo
general analysis. Sections III and IV are supplemented by
Appendix where we show that a particular type of transitio
while it may occur, is necessarily an isolated point in t
phase diagram. In Sec. V, simulations of the full model c
roborate some of our most striking results. We conclude
Sec. VI with a summary and some directions for future
search.

II. PHASE TRANSITIONS: MEAN-FIELD ANALYSIS

We focus our analysis on systems that may undergo Is
like phase transitions. A convenient order parameter to c
acterize the phase transitions is akin to themagnetization
01110
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m5u^w&u, ~7!

where the brackets indicate both a spatial and a temp
average of the field in the steady state. Ordered states
associated withmÞ0.

In order that a particular system described by Eq.~5! ex-
perience a phase transition driven by a spontaneous sym
try breaking of the order parameter fromm50 to mÞ0, the
symmetry that leads tom50 must be embedded in th
model. Note that if Eq.~5! is invariant under the combine
transformation

w↔2w,

j↔2j, ~8!

thenm50, the symmetric state, is indeed always a solut
for the order parameter. Equation~5! satisfies the required
symmetry ifV(w) andG(w) areevenfunctions. We will thus
consider this case throughout the paper. Furthermore,
also assume with no loss of generality that

V~0!50,

G~0!51. ~9!

The exact stationary probability density of Eq.~5! can be
calculated for any noise interpretation, including the Itoˆ and
the Stratonovich interpretations@8#. However, any further
analytic insights require further approximation. We impl
ment amean-field approximationin Eq. ~5! by replacing the
average value of the fields of the 2D nearest neighbors of
site i by the mean-field valuêw(t)&, that is,

1

2d (̂
i j &

w j~ t !→^w~ t !&. ~10!

This procedure, which is equivalent to assuming global c
pling rather than nearest-neighbor coupling, disregards fl
tuations of the neighboring sites around the mean va
Since all sites are then equivalent, the lattice index can
dropped and the set of field equations reduces to a si
equation. However, the unknown mean value of the fi
appears in this equation and must be chosenself-consistently.
Thus, we obtain a closed approximate version of the prob
as expressed in the two equations

ẇ~ t !5G~w!S 2
]V~w!

]w
1K@^w~ t !&2w# D1@G~w!#1/2j~ t !,

~11!

^w~ t !&5^w~ t !&r . ~12!

Here ^•&r stands for a statistical average with respect to
probability density associated with Eq.~11!. As t→` we
expect the system to go to a steady state for which a ti
independent description is appropriate. We assume this s
tion can be found by settingẇ(t)50 in Eq.~11! and solving
for the now time-independent averagêw&. The self-
consistency equation~12! now simply reads^w&5^w&r ,
2-2
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COMPREHENSIVE STUDY OF PHASE TRANSITIONS IN . . . PHYSICAL REVIEW E69, 011102 ~2004!
where^•&r now stands for a statistical average with resp
to thestationaryprobability density

rst~w;^w&!5N~^w&!G~w!(a21)e2(2/s2)[V(w)1(K/2)(^w&2w)2] ,

~13!

N(^w&) is the normalization constant, anda50 (a51/2)
for the Itô ~Stratonovich! interpretation of the noise. For th
case of a constant coefficientG51 it is possible to prove an
H theorem ensuring that as time increases the tim
dependent solution of Eqs.~11! and~12! approaches the self
consistent solution obtained using the stationary probab
density ~13! @11#, but such a proof is not available for th
general case. It is an interesting question to consider whe
the proof can be generalized to the relaxational systems
field-dependent coefficients that we are dealing with here

The mean-field formulation posed above cannot be sol
in full generality either, but it does allow some analytic ch
acterization of the problem. It is this characterization that
pursue as far as possible.

Note that the disordered solution~symmetric state! ^w&
50 always solves Eq.~12!. Yet, other solutions such tha
^w&Þ0 are also possible. We refer to the latter as orde
solutions. Note that as a consequence of the parity of
functionsV(w) and G(w), ^w&r is an odd function of̂ w&
and therefore, if̂ w& is a solution of Eq.~12!, then so is
2^w&. However, both lead to the same value of the or
parameterm.

At this point, we must make a distinction betweensolu-
tionsandphasesas determined by the stability of the forme
We call adisordered~D! phase a macroscopic state whe
^w&50 is theonly stable solution. If the solution̂w&50 is
unstable, and only a solution with^w&Þ0 is stable, the phas
will be called ordered ~O!. If ^w&50 coexists with other
stable, but ordered, solutions, the phase will be denote
multistable~M!.

Since the solution of the self-consistency equation~12!
determines the acceptable values of^w&, it is crucial to un-
derstand the behavior of^w&r as a function of̂ w&. Noting
that

]^w&r

]^w&
5

2K

s2
~^w2&r2^w&r

2!, ~14!

and applying the generalized Schwarz inequality

^ f 2~w!&r^g
2~w!&r>u^ f ~w!g~w!&ru2, ~15!

with f (w)5w and g(w)51, one concludes that the righ
hand side of Eq.~14! is positive, and thereforêw&r is a
monotonically increasing function of^w&. Moreover, taking
the limit of

^wn&r5E
2`

`

dwwnrst~w;^w&! ~16!

as ^w&→6` immediately leads to

lim
^w&→6`

^wn&r→^w&r
n , ~17!
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and, consequently,

lim
^w&→6`

]^w&r

]^w&
50. ~18!

Therefore it follows that

lim
^w&→`

^w&r,^w&, lim
^w&→2`

^w&r.^w&, ~19!

that is,^w&r necessarily lies below~above! ^w& as^w& goes
to plus ~minus! infinity.

Figure 1 illustrates the resulting possible different pha
in terms of the possible solutions of the self-consisten
equation ~12!. The dashed lines represent^w&, the solid
curves ^w&r , and the self-consistency solutions are th
points of intersection. Our subsequent discussions pres
that the systemdefinitelygoes to a stable state. We exclud
‘‘runaway’’ systems that do not fall into this category.

III. PHASE BOUNDARIES: SECOND- AND FIRST-ORDER
PHASE TRANSITIONS

With Fig. 1 in mind, consider now the possible resultin
behaviors of the order parameter as we transit from
phase to another by changing a control parameter. Note
the general model~5! ~as well as the mean-field version o
the model! depends on only two parameters, the coupli
coefficientK and the noise intensitys2, so the control pa-
rameter that characterizes a change from one phase to
other could be either of these two~or some combination of
them!. The question then is how the points of intersection
Fig. 1 move as one varies a control parameter that takes
system from the behavior shown in one panel to that sho
in another.

Consider the transition as a system moves from the
havior shown in panel~a! of Fig. 1 to that of panel~b!. The
way this is expected to occur is that the solid curve rota
upward so that in addition to thêw&50 solution, another
solution emerges at the origin. This second solution th
moves upward along the diagonal as the control param
increases. This~a!→~b! transition is illustrated in the top
panel of Fig. 2, where the solid lines represent stable s
tions and the dotted lines the unstable solutions. The tra
tion between the disordered and ordered phases is contin
in the order parameter~second-order phase transition!. A
transition from panel~b! in Fig. 1 to panel~c! would involve
the evolution of a kink in the curve that first cuts the diag
nal at the origin and then moves upward toward the exist
cut. Associated with this there is a change in the curvature
^w&r near the origin. This transition is sketched in the midd
panel of Fig. 2, where we show the two nonzero solutio
moving closer together as the control parameter increa
The transition between the ordered and multistable phase
discontinuous~first-order phase transition! and is expected to
exhibit hysteresis. The discontinuity is clearly apparent,
example, in the jump from the disordered branch of the m
tistable phase as one decreases the control parameter an
branch becomes unstable. Finally, a transition from pane~a!
to panel ~c!, the bottom panel of Fig. 2, again involves
2-3
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change in the curvature near the origin and the evolution
kink that first touches the diagonal at a single nonzero va
that then separates into two as the control parameter
creases. The transition between disordered and multist
phases is again discontinuous. Note that all of these tra
tions can also proceed in the opposite direction than ill

FIG. 1. Schematic of the possible solutions for the se
consistency equation~12!. If the only solution iŝ w&50, panel~a!,
the system is in adisorderedphase. In panel~b!, there is another
solution in addition to the one at^w&50. Only the nonzero solution
is stable, so that this represents anorderedphase. In panel~c! there
is an even number of nonzero solutions~here, two! in addition to
the ^w&50 solution. Thê w&50 solution is stable, the next inter
section is unstable, and the third is again a stable solution.
system thus exhibitsmultistability in this case, and involves th
coexistence of a disordered and an ordered solution.
01110
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trated here, e.g., a transition from order to disorder wo
occur as in the top panel but from right to left.

We stress that the transitions between disordered and
dered phases are continuous in the order parameter~second-
order phase transitions!, whereas the transitions from or t
multistable phases are discontinuous~first order! and are
therefore expected to exhibit hysteresis. There may be sin
lar isolated exceptions to this latter conclusion, as discus
in the Appendix.

A more quantitative characterization of the phase tran
tions is possible for those transitions that involve a chang
the stability properties of thêw&r50 solution, that is, for
phase transitions between disordered and ordered phases
between ordered and multistable phases~i.e., the top and
middle panels in Fig. 2!. This characterization involves th
first two nonzero derivatives of̂w&r with respect tô w& in
the vicinity of the origin. The first derivative provides info
mation about the slope of̂w&r and the third about the
concavity/convexity (̂w&r is an odd function of̂w&, so even
derivatives around the origin vanish!. Transitions between
disordered and ordered phases~second order! occur when

-

e

FIG. 2. Behavior of the order parameterm as a function of a
control parameter CP in the vicinity of a transition point. Tran
tions between disordered and ordered phases are always se
order~top panel!. As shown in the middle and bottom panels, pha
transitions from, or to, multistable phases are~with the exception of
singular points discussed in the Appendix! first order.
2-4
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]^w&r

]^w&
U
^w&50

51,

]3^w&r

]^w&3 U
^w&50

,0. ~20!

Transitions between ordered and multistable phases~first or-
der! occur when

]^w&r

]^w&
U
^w&50

51,

]3^w&r

]^w&3 U
^w&50

.0. ~21!

In turn, these derivatives can be expressed in terms of
cumulants of the probability densityrst(w;0). Weproceed to
establish this relation.

Since^w&r is an odd function of̂w&, its Taylor expansion
around the solution̂w&50 reads
si

o
es

01110
he

^w&r5 (
n50

`

a2n11^w&2n11, ~22!

where

a2n115
1

~2n11!! E2`

` ]2n11rst~w;^w&!

]^w&2n11 U
^w&50

w dw.

~23!

Furthermore, a straightforward but tedious calculation le
to the result

a2n115
22n11

~2n11!! S K

s2D 2n11

C2n12 , ~24!

whereC2n12 is the (2n12)th cumulant of the probability
distribution rst(w;0). The relation of the cumulants to the
statistical moments of the probability distribution is given
C2n1252U 0 1 0 0 0 0 . . .

^w2&0 0 1 0 0 0 �

0 ^w2&0 0 1 0 0 �

^w4&0 0 ~1
3!^w2&0 0 1 0 �

0 ^w4&0 0 ~2
4!^w2&0 0 1 �

^w6&0 0 ~1
5!^w4&0 0 ~3

5!^w2&0 0 �

A � � � � � �

U
2n12

, ~25!
ob-

can-
for-
where u•u2n12 indicates the determinant of the (2n12)
3(2n12) matrix, (

•

•) the binomial coefficients, and̂•&0

stands for statistical averages over the probability den
rst(w;0). Therefore, around̂ w&50 the self-consistency
equation reads

^w&5^w&r5^w& (
n50

`
22n11

~2n11!! S K

s2D 2n11

C2n12^w&2n,

~26!

and it then follows that

]^w&r

]^w&
U
^w&50

5
2K

s2
C2 , ~27!

]3^w&r

]^w&3 U
^w&50

58S K

s2D 3

C4 . ~28!

In summary, the boundaries between disordered and
dered phases and between ordered and multistable phas
ty

r-
are

characterized by the first two nonzero cumulants of the pr
ability distributionrst(w;0) as follows:

C25
s2

2K

C4,0
J ⇒Second-order phase transition

~order-disorder boundary!, ~29!

C25
s2

2K

C4.0
J ⇒First-order phase transition

~order-multistable boundary!. ~30!

Transitions between disordered and multistable phases
not be characterized in this fashion since they require in
mation about̂ w&r away from^w&50.
2-5
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IV. OVERALL STRUCTURE OF PHASE DIAGRAMS

Having discussed the possible phase transitions that m
be observed in the mean-field system~11! and~12!, we now
ask which particular phases might be present for partic
values of the control parametersK ands2. In this section we
present an analytic deduction of the phases present for s
and for large values of the coupling coefficientK. The be-
havior for intermediate values must be deduced on the b
of plausibility arguments that we introduce later.

We start by defining

QK5a1215
2K

s2
C221. ~31!

This quantity measures the differences in the slopes of^w&
and ^w&r as a function of̂ w& near the origin. According to
the analysis presented in the preceding section,QK.0 for an
ordered phase andQK,0 in either disordered or multistabl
regions of the phase diagram. Moreover, the phase bo
aries to or from ordered states are given by the zeros ofQK .

Note thatQ0521, that is, ^w&r50 in the absence o
coupling. Thus,̂ w&50 is the only possible solution to th
self-consistency equation~12! in the small-coupling limit,
and the system is disordered in this limit.At sufficiently weak
coupling the system is therefore always disordered.

One can easily check that

]QK

]K U
K50

.0. ~32!

Thus, asK grows from zero the system advances toward
ordered phase. This statement does not mean that the sy
will actually enter into the ordered phase as the coupl
increases; it simply states the ordering role of weak but
creasing coupling.

On the other hand and more interestingly, it is possible
investigate the strong-coupling limit as follows. We first i
troduce the convenient notation

F~w!5G~w!a21e2(2/s2)V(w), ~33!

I 2n~K,s2!5E
2`

`

w2nF~w!e2(K/s2)w2
dw, ~34!

wheren>0. We can then write all the nonzero moments
rst(w;0) as^w2n&05I 2n /I 0. In particular, the cumulants o
interest here can be written as

C25
I 2

I 0
, C45

I 4

I 0
23

I 2
2

I 0
2

. ~35!

Moreover, notice that all the moments can be reduced to
calculation ofI 0 since

I 2n~K,s2!5~21!ns2n
]nI 0~K,s2!

]Kn
. ~36!
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A series expansion ofI 0 useful for large values ofK follows
from an expansion ofF(w) aroundw50, which allows us
to carry out the integral

I 0~K,s2!5E
2`

`

(
m50

` S F (m)

m!
wmDe2(K/s2)w2

dw

5 (
m50

`
F (2m)p1/2

m! 22m S s2

K D m11/2

, ~37!

where

F (z)5
]zF~w!

]fz U
w50

. ~38!

Introducing Eq.~37! into Eq. ~36!, we obtain the series

I 2n~K,s2!5 (
m50

`
F (2m)p1/2@m11/2#n

m! 22m S s2

K D m1n11/2

,

~39!

where

@z#n5 )
l 50

n21

~z1 l !, @z#051. ~40!

The moments ofrst(w;0) then read

^w2n&05S s2

K D n (m50

`
F (2m)

m! 22m
@m11/2#nS s2

K D m

(
m50

`
F (2m)

m! 22m S s2

K D m
. ~41!

A more convenient expression for Eq.~41! is obtained by
performing its Taylor expansion around (s2/K)→0,

^w2n&0 5
K@1

S s2

K D nF @1/2#n1S s2

K D F (2)

8F (0)
~@3/2#n2@1/2#n!

1S s2

K D 2 1

32~F (0)!2
@F (4)F (0)~@5/2#n2@1/2#n!

22~F (2)!2~@3/2#n2@1/2#n!#1OS S s2

K D 3D G .

~42!

The first term in the series~42!, i.e., up to order (s2/K)n,
leads to the familiar result of applying thesteepest descen
method@12# to I 0,

^w2n&0 5
K→`

S s2

K D n

@1/2#n . ~43!

However, this result is not sufficiently accurate to captu
enough of the large-coupling behavior of^w2n&0 and shed
2-6
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light on the behavior of the phase boundaries in that lim
Keeping up to the next order, that is,

^w2n&0 5
K@1

S s2

K D nF @1/2#n1S s2

K D F (2)

8F (0)
~@3/2#n2@1/2#n!

1OS S s2

K D 2D G , ~44!

one finds for the functionQK ,

QK@15
1

2 S s2

K DF (2)

F (0)
1OS S s2

K D 2D . ~45!

Note thatF (0)51 @c.f. Eq.~9!#, and therefore the sign ofQK
for large values of the coupling is determined by the sign
F (2),

F (2)5~a21!G (2)2
2

s2
V(2). ~46!

If F (2).0 then QK@1.0 ~ordered phase!. On the other
hand, if F (2),0 then QK@1,0 ~disordered or multistable
phase!. That is, whether or not the system is in an orde
phase depends only on the balance of convexities of the l
potential and the field-dependent coefficient at the origin

Furthermore, sinceQK@15O„(s2/K)…, which vanishes
asK increases, one knows that for large coupling the sys
is ‘‘near’’ a phase boundary of an ordered phase. One
gain some insight into the type of transition that might
involved by studying the fourth cumulantC4 @cf. Eqs.~29!
and ~30!#. Using Eq. ~42! in Eq. ~35! and recalling that
F (0)51, we obtain

C4~K@1!5
1

16S s2

K D 4

@F (4)23~F (2)!2#1OS S s2

K D 5D ,

~47!

where

F (4)52
12

s2
~a21!V(2)G (2)1

12

s4
~V(2)!21~a21!G (4)

13~a21!~a22!~G (2)!22
2

s2
V(4). ~48!

We thus confirm that, independently of the behavior of
system at intermediate values of the coupling, for large c
pling the appearance or disappearance of ordered phas
reflected in the sign of the fourth cumulant depends on
geometrical properties ofV(w) and ofG(w) around the ori-
gin.

There are basically only two distinct generic types of b
havior of these functions around the origin, and theref
only four possible combinations. The possible types of fu
tions are shown in Fig. 3, where we have plotted the sim
representative cases@13#
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V1~w!5
w2

2
,

V2~w!5
w4

4
2

w2

2
~49!

and

G1~w!5
11w2

11w4
,

G2~w!5
1

11w2
. ~50!

Note that the field-dependent coefficientG1 favors fluctua-
tions aroundw561 while G2 leads to the largest fluctua
tions aroundw50 @4#. It is quite straightforward to deter
mine the sign ofC4 on the basis of the derivatives of thes
functions@one can use the generic forms~49! and ~50! as a
guide# and compile the following table. We emphasize th
these are results in the strong-coupling limit. The entries in
the table indicate order~O!, disorder~D!, and multistability
~M!:

V1(w) V2(w)

G1(w) M O if s2,sc2
M if s2.sc

2

G2(w)
O if s2.sc

2

D if s2,sc
2 O

FIG. 3. Generic local potentialsVi(w) and field-dependent co
efficientsG i(w) as a function of the fieldw. The solid lines are for
i 51 and the dotted lines fori 52. The behavior at the origin of the
derivatives ofV(w) andG(w) determine the phase at large valu
of the coupling~see text!.
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Heresc
2 is a critical value of the noise intensity that sep

rates different phases; for the generic models displa
above, sc

251/(12a). Note that the noise interpretatio
through the value ofa simply shifts the critical value ofsc

2 .
The caseV1 , G2 with the functions given above has recen
been studied in the context of phase transitions and pa
formation@4,8,9#. Also, in agreement with our general anal
sis it was noted recently@8# that in that particular case th
noise-induced phase transition is not attributable to the
called Stratonovich drift, as is the case in other noi
induced phenomena@6#.

We have thus arrived at the generic phase structure for
mean-field problem~11! and~12! in the weak-coupling limit
~the system is disordered! and in the strong-coupling limi
~as shown in the table!. For intermediate coupling we are no
able to provide a general quantitative analysis except to n
that if s2→0, the system is always in a disorderedD phase
since the fluctuations are needed to provide the energ
induce symmetry breakings.

Despite this difficulty, one can introduce compelling arg
ments to connect the phase behavior that we have establ
in these limits, and to arrive at a set of full phase diagra

There are several unknown regions connecting vari
known phases at this point. In theV1 ,G1 case we need to
connect the weak-couplingD phase to the strong-couplingM
phase. For theV2 ,G1 combination we require a connectio
between theD phase and anO phase if the noise is weak, o
to anM phase if it is strong. With theV1 ,G2 combination the
connection needs to be made between the disordered w
coupling phase and an ordered or a disordered stro
coupling phase depending on the noise intensity. And in
V2 ,G2 case a connection needs to be established from
disordered to the ordered phase. The simplest possible
narios for connections are the following. The simplest co
nection between disordered phases is simply a disord
phase, i.e., a situation where no phase transition occurs a
A connection between disordered and ordered phases is
straightforwardly accomplished through a single seco
order phase transition. Finally, for the connection betwe
disordered and multistable phases, two different scena
are most feasible. One possibility is that the connection
mediated through an ordered phase, as follows. As note
Fig. 2, when a multistable region appears from a disorde
phase, the unstable solution tends at first to move downw
as the control parameter increases. If the unstable solu
eventually vanishes, the disordered phase necessarily
comes unstable and one necessarily enters an ordered p
Such destabilization does not occur if the transition is me
ated by an ordered phase. On the contrary, multistable ph
arising fromOM transitions grow more stable as the cont
parameter increases~see Fig. 2!. In this case, a feasible se
quence would be of the formDOM. On the other hand, a
direct DM transition may also occur, but only if the initia
vanishing tendency of the unstable solution is stabilized
the coupling increases.

We can corroborate this scenario by calculating the ph
diagrams that are obtained from the mean-field approxi
tion for the particular functions~49! and ~50!. We numeri-
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cally solve the self-consistency equation~12! and compute
the boundaries separating different phases. Recall that
noise interpretation simply shifts the transitions but does
change the phase diagram structure. We present the re
for a50, that is, the Itoˆ interpretation, for whichsc

251.
The results are shown in Fig. 4.

Note that the actual structure of the phase diagram
small and large values of the couplings is perfectly captu
by our analysis. Moreover, the value of the critical noi
intensity is sc

251, as predicted. As for the unknown do
mains shown for intermediate coupling, our arguments ab
the simplest scenarios agree with the mean-field results.
example, for theV2 ,G1 combination the appearance of th
multistable phase with increasingK is mediated through an
ordered phase. We point out that for the caseV1 ,G1, there is
a triple point where all phases merge. At this critical point
continuous phase transition between disordered and m
stable phases occurs. As noted earlier, this behavior is si
lar and isolated. Note also that multistability appears in t
case by means of aDOM sequence with increasing couplin
K for noise intensities to the right of the triple point. How
ever, to the left of the triple point the multistable phase ari
from a DM sequence. Moreover, above the triple point a
with increasings2, multistable phases are always desta
lized and followed by an ordered phase, as mentioned ab
There is evidently an asymptote ats2.2 for the phase
boundary separating the disordered and multistable pha
However, this critical noise intensity is not captured by o
theory since it does not involve slopes and convexitiesnear

FIG. 4. Mean-field phase diagrams as a function of the lo
potentials and field-dependent kinetic coefficients given by E
~49! and ~50!. The small open circle in the phase diagram forG1

andV1 where the three phases merge indicates an isolated sing
critical point ~triple point! where a continuous phase transition b
tween disordered and ordered phases occurs~see the Appendix!.
The overall structure of the phase diagrams is in perfect agreem
with the schematic structures discussed in the text.
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the origin. Instead, we show below how this second criti
value of the noise intensity can be calculated by analyz
the zero-dimensional version of the problem.

A number of other striking features of the phase diagra
are noteworthy. For bothV1 cases, independently of th
value of the coupling,the system becomes more ordered
the noise intensity increases. In the case ofG1 this behavior
is associated with the destabilization of multistable pha
and in general suggests that the phenomenon of the so-c
inverted phase diagramsdepends mainly on the convexity o
the local potential around the origin. It is also worth noti
the phenomenon of reentrant noise-induced multistability
the caseV2 ,G1. If the coupling is greater thanK;10, in-
creasing the noise intensity causes a transition from an
dered phase to a multistable phase. However a further
crease in the noise intensity eventually leads the system
to the ordered phase. This behavior resembles the phen
enon of reentrance as a function of the intensity of the fl
tuations in other noise-induced phenomena@6,10#. However,
in the latter the phase changes are from disordered to ord
and, for sufficiently intense noise, back to disorder.

Zero-Dimensional Analysis.Previous studies for the par
ticular caseV1 , G2 @4,8# have revealed that in the case
relaxational flows with field-dependent relaxation coe
cients the mechanism responsible for the phase transitio
similar to that which drives the noise-induced transition
the manner of Horsthemke-Lefever in zero-dimensional s
tems@7#. In the zero-dimensional case, noise-induced tra
tions are associated with changes in the extrema of the l
potential. We present an analysis of the zero-dimensio
system to compare with some of the results of our mean-fi
analysis. The zero-dimensional version of Eq.~5! reads

ẇ~ t !5G~w!S 2
]V~w!

]w D1@G~w!#1/2j~ t !, ~51!

that is, the uncoupled version of our original model~5!. The
stationary probability density now is

rst~w!5Ne2(2/s2)Veff(w), ~52!

where N is the normalization constant andVeff(w) is the
effectivepotential,

Veff~w!5V~w!1
s2~12a!

2
ln G~w!. ~53!

The equilibria of the effective potential are given by the co
dition Veff8 (w* )50, that is,

G~w* !V8~w* !1
s2~12a!

2
G8~w* !50. ~54!

The stability of the equilibria depends on the sign of t
second derivative of the potential at the equilibrium points
noise-induced transition occurs when there is a change in
stability of the solutionw* . Therefore, the boundary of sta
bility is given by Veff9 (w* )50, that is,
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G2~w* !V9~w* !1
s2~12a!

2
$G~w* !G9~w* !2@G8~w* !#2%

50. ~55!

Note that w* 50 is always a solution of Eq.~54! and
therefore the disordered solution is stable if

V9~0!1
s2~12a!

2
G9~0!50. ~56!

This equation corresponds exactly to the stability bound
associated with Eq.~46! . In other words, the strongly
coupled system behaves exactly as the uncoupled syste. In
the casesV2(w),G1(w) andV1(w),G2(w) the critical value
of the noise intensity that changes the stability of the dis
dered solution to an ordered one is exactly as calculate
the coupled system,sc

251/(12a).
Moreover, our purpose in analyzing the zero-dimensio

system is also to understand the phase boundary that s
rates multistable and disordered phases in the caseV1 ,G1 in
the spatially extended problem. Recall that in that case
stability of the disordered solution does not change, a
therefore we are not able to use our mean-field analysis
the disordered state to compute phase boundaries. How
we can use Eqs.~54! and~55! to support our numerical find
ings that indicated that there is a critical noise intensity se
rating those two phases. While solving Eq.~54! for solutions
w* Þ0 is rather cumbersome and Eq.~55! does not have an
analytic solution for those values, it is trivial to solve th
problem numerically. The result agrees perfectly with o
previous findings: there is an asymptote ats2.2 ~Itô) that
corresponds to the critical value of the noise intensity se
rating disordered and multistable phases.

V. NUMERICAL SIMULATIONS

To check the predictions of the mean-field theory w
present numerical simulations of Eq.~5! in a two-
dimensional square lattice with nearest-neighbor inter
tions, the Itôinterpretation of the noise, and periodic boun
ary conditions. We focus on the caseV1 ,G1. This is the most
interesting, previously unexplored, case: a striking effect
the noise, a noise-induced multistable phase, and an inve
phase diagram, occur in this case. Note that the caseV1 ,G2
has been studied recently@4#, the caseV2 ,G2 presents a
phase diagram with a phenomenology similar to the w
known model A@1,14#, and the caseV2 ,G1 presents as its
main feature the same striking phenomenology of noi
induced multistability as does the caseV1 ,G1.

Figure 5 shows the order parameterm as a function of the
noise intensitys2 for a fixed value of the coupling constan
K510. The system is seen to explore the three poss
phases, disordered, multistable, and ordered, as the fluc
tions become stronger. Moreover, the system presents a
verted phase diagram where order becomes more promi
as the noise is increased. As indicated by the discontinu
behavior of the order parameter, the phase transitions are
order in all cases. To detect the multistable phase and
2-9
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associated hysteresis, we integrated Eq.~5! under two differ-
ent conditions. The initial conditions and the noise reali
tions are identical in both cases. A difficulty in such simu
tions is that it takes an inordinately long time to reach
steady state~eventually the system leaves any steady stat
the system is finite, but this time can be made as long
desired by increasing the size of the system!. To overcome
this difficulty, in one case we added a very small exter
field that favors the solutionm50 while in the other we
added one that favors an ordered solution. As soon as st
states were reached, the external fields were turned off.
insets of Fig. 5 show, by means of a density plot, the val
of the field in the multistable phase for the pointsA andB for
which s2'3. The scale of the density plots is also presen
and is the same for both insets. The insets highlight the s
ing feature of the noise-induced multistability and show
two possible states within the multistable region.

VI. CONCLUSIONS

We have presented a detailed study of phase transition
models with field-dependent relaxation coefficients.
means of a mean-field approximation in combination w
other analytical techniques and plausibility arguments s
ported by particular examples, we have elucidated the ph
diagrams that can be found in such models. We stress
our methods can easily be applied to a variety of other s
tems. Moreover, we have demonstrated that disord
multistability continuous phase transitions are singular po
in the phase diagram, and that the phases for large value
the coupling are determined by geometrical features of
local potential and of the field-dependent coefficient in
vicinity of the origin. We have also showed that the behav

FIG. 5. Order parameterm as a function of the noise intensit
s2 for the caseV1 ,G1 and a fixed value of the couplingK510. The

noise term is interpreted in the Itoˆ sense. Note that the syste
explores the three possible phases~disordered, multistable, and or
dered! as the intensity of the noise is increased. The insets show
steady states of the field for the pointsA and B indicated in the
figure ~see text!. The noise intensity at these points iss2'3.
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of the extended system at large values of the coupling c
ficient is equivalent to the behavior of the uncoupled ze
dimensional system. Therefore, the mechanism respons
for the phase transitions is similar to the noise-induced tr
sitions in the manner of Horsthemke-Lefever, and is not
tributable to the Stratonovich drift together with collectiv
effects involved in other noise-induced phenomena@6,10#.
Finally, we have performed numerical simulations of a p
ticular case to check the results of the mean-field approxi
tion. The numerical results are in qualitative agreement w
the theoretical predictions and reproduce the main feature
the system, most notably, the occurrence of noise-indu
multistability and of an inverted phase diagram indicati
that stronger noise induces greater order.

We envision further modifications of these models th
would extend the richness of the observed phenomenol
In particular, including other degrees of freedom and cons
ering different couplings increases the complexity of t
multistability phenomena caused by the noise. Further
grees of freedom could, for example, lead tolocking of the
system either in an oscillatory mode~limit cycle! or in a
stationary state~focus! depending on the initial conditions
Considering couplings that favor morphological instabiliti
could lead to pattern formation determined entirely by t
initial conditions. Work in these directions is in progress.

ACKNOWLEDGMENTS

This work was partially supported by the Engineering R
search Program of the Office of Basic Energy Sciences at
U. S. Department of Energy under Grant No. DE-FG0
86ER13606, by a grant from theNew Del Amo Program, by
MECD-Spain Grant No. EX2001-02880680, and by MCY
Spain Grant No. BFM2001-0291.

APPENDIX: SINGULAR TRANSITION

In Fig. 2 and the discussion surrounding it we noted t
with the exception of singular points in the parameter spa
phase transitions from disorder to multistability are first o
der ~discontinuous!. In this appendix we expand on this a
sertion. By ‘‘singular’’ we mean that if there is a poin
(s

*
2 ,K* ) in the phase diagram where a continuous transit

between disorder and multistability exists, then no neighb
ing points in the phase diagram can present the same tra
tion. In other words, continuous disorder-multistability pha

FIG. 6. Schematic behavior of the order parameter as a func
of a control parameter in the vicinity of a continuous disord
multistability phase transition. This kind of behavior is singular a
isolated in the phase diagram.
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transitions areisolated critical pointsin the phase diagram
and there is no plausible continuous functionK(s2) connect-
ing them.

Figure 6 shows the behavior of the order parameterm as a
function of a control parameter in the vicinity of a contin
ous disorder-multistability phase transition. Note that for t
behavior to happen, all three roots of the self-consiste
equation must vanish exactly at the critical value of the c
trol parameter. Moreover, the convexity of^w&r must also
change sign at exactly that value. If such a critical po
(s

*
2 ,K* ) exists, it must satisfy the conditions

C25
1

2 S s
*
2

K*
D

C450
J ⇒5 ^w2&05

1

2 S s
*
2

K*
D

^w4&05
3

4 S s
*
2

K*
D 2

.

~A1!

These requirements fulfill the Schwarz inequality, Eq.~15!,
and we must therefore conclude that such a critical poin
possible.
s.

e
.

01110
t
y
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t
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Now, assume the existence of the critical point (s
*
2 ,K* ).

We investigate the requirements for a neighboring po
(s

*
2 1«s2,K* 1«K) to also be associated with a disorde

multistability phase transition. A straightforward calculatio
leads to the following condition to be satisfied by«s2:

«s2@^w2&0^V~w!&02^w2V~w!&0#50. ~A2!

This can in general only be satisfied if«s250. As for «K , it
must satisfy

«K~^w4&0^w
2&02^w6&0!1«K

3

2 S s2

K D 3

50. ~A3!

Again, the only acceptable solution to this equation is«K
50. Therefore, if there exists a critical point in the pha
diagram where a continuous disorder-multistability pha
transition occurs, then that point is singular in the sense
it is isolated.
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