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Comprehensive study of phase transitions in relaxational systems with field-dependent coefficients
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We present a comprehensive study of phase transitions in single-field systems that relax to a nonequilibrium
global steady state. The mechanism we focus on is not the so-called Stratonovich drift combined with collec-
tive effects, but is instead similar to the one associated with noise-induced transitions in the manner of
Horsthemke-Lefever in zero-dimensional systems. As a consequence, the noise interpfetgtjoifo vs
Stratonovich merely shifts the phase boundaries. With the help of a mean-field approximation, we present a
broad qualitative picture of the various phase diagrams that can be found in these systems. To complement the
theoretical analysis we present numerical simulations that confirm the findings of the mean-field theory.
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[. INTRODUCTION Recent studies have revealed the importance of field-
dependent relaxation coefficient§ ¢) in the dynamics of
Equilibrium and nonequilibrium relaxational dynamics these systemp4]. A generic description for such systems is
play an important role in many critical phenomdia Typi-  provided by the Langevin equation
cally, relaxational flows drive the evolution of the system to toh)
the equilibria determined by a Lyapunov energy functighal : oF({e
that depends on local potential functionals and on the inter- ~ ¢i(D)= _r(q’i(t))m+[F(‘Pi(t))]u2§i(t)' )
actions in the systerf2,3]. The celebrate@* functional is a
paradigmatic example of such a potential functional andyhereI'(¢) and[T'(¢)]*? are both positive. For example, it
gives rise to well-known equilibrium models such as the sohas been shown that relaxational flows driven by field-
called model Ala coarse-grained version of the Ising model dependent coefficients may presemterted phase diagrams
and model B(an archetype of phase separation dynajnics where ordering effects increase with the intensity of the fluc-
among other$1,2]. tuations. This behavior has been observed in polymer mix-

Typical relaxational models describe the flow of a field tures where spinodal decomposition, i.e., phase separation,
¢i(t) defined on a-dimensional square lattice via a Lange- increases with increasing temperat{f5é

vin equation of the form The importance of these flows may be even more pro-
nounced in nonequilibrium systems, and goes well beyond
= —T SF({e}) +T2 (1) (1) the scenarios that lead to inverted phase diagrams. One ex-
@i Soi(t) ne ample is that of pure noise-induced phase transitigts

Such phase transitions exhibit the striking feature that noise
Herei labels a lattice sitel” is a positive constant{f}) is thecrucial element responsible for the appearance of or-

=(¢1, ...,pn) denotes the entire set of fields, afidare  dered phases that disappear in the absence of noise. The first
Gaussian white noises with zero mean and correlation funamechanism identified in the literature leading to such behav-
tions ior [6] relied on a combination of the so-called Stratonovich
drift that arises under this particular interpretation of the
(GDE(L))=0a8;8(t—t"). (20 noise and collective effects. The Stratonovich drift in these

) ) ) . systems leads to opposite dynamical responses at short and
Typically, the functionalF consists of a local potentidd(¢)  |ong time scales. Collective effects generated by the coupling

and an interaction term, among the field elements can amplify short time instabilities
K (that would die away in the absence of coupjindpus lead-
F _ V(o) + — 02| 3 ing to the observed noise-induced phase transitions. As a
(eh) Z ()" &g <.EJ> (e5= 1) @ consequence, there was originally a widespread belief that

noise-induced phase transitions could only be found in sys-
whereK is the coupling coefficient. The leftmost sum in Eq. tems where there are no noise-induced transitj@issince
(3) runs over all lattice sites and the rightmost sum over thehe latter transitions occur in zero-dimensiofiahcoupled
two-dimensional2D) nearest neighbors of a given siteA  systems. Recent studies involving relaxational flows with
keystone in this formalism is the linkthe “fluctuation-  field-dependent relaxation coefficients have shown otherwise
dissipation relation) between the intensit} o2 of the fluc- by presenting a system where both a transitizero dimen-
tuating contribution and the relaxation paramdtethrough  siona) and a phase transitidicoupled systemsare induced
the constant-? that in equilibrium systems is proportional to by the same source of nois&]. In fact, the mechanism is not
the temperature. The relaxation coefficienaffects how fast attributable to the Stratonovich drift because these transitions
the system relaxes to the global steady state. occur independently of the noise interpretati@j. More-
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over, the same mechanism has been extended to pattern for- m=|{e)], (7)
mation phenomenf9], generalizing a previous mechanism
based on the Stratonovich drjft0]. where the brackets indicate both a spatial and a temporal

A thorough understanding of relaxational models drivenaverage of the field in the steady state. Ordered states are
by field-dependent coefficients is therefore important for aassociated withm+0.
number of reasons. They play a relevant role in critical phe- In order that a particular system described by &9.ex-
nomena, they may explain situations where inverted phasperience a phase transition driven by a spontaneous symme-
diagrams are obtained, and they constitute a generalization ¢y breaking of the order parameter fram=0 to m#0, the
the seminal work of Horsthemke and Lefever on noise-symmetry that leads ton=0 must be embedded in the
induced transitions to noise-induced phase transitions imodel. Note that if Eq(5) is invariant under the combined

coupled systems. transformation
Whereas specific nonequilibrium relaxational models
driven by field-dependent coefficients have been considered LR
in the literature, herein we present a more general analysis of
such models, whereby the specific cases considered earlier §=—¢, ®)

become part of a broad panorama. We ask two questiaps:
What are the circumstancé®atures of the model, values of
the control parametershat lead to purely noise-induced
phase transitions2) What is the nature of the phases that
can occur in these systems, and what are the features of tf
model that determine these phases? In answering these qu

thenm=0, the symmetric state, is indeed always a solution
for the order parameter. Equati@B) satisfies the required
symmetry ifV(¢) andI'(¢) areevenfunctions. We will thus
nsider this case throughout the paper. Furthermore, we
so assume with no loss of generality that

tions, we discuss the possible phase diagrams that can be V(0)=0
obtained and show that their overall structure depends on '
geometrical properties such as the balance of convexities of r(0)=1. (9)

the local potentials and of the field-dependent coefficients.

Furthermore, we show how multistability can be induced by The exact stationary probability density of E§) can be
noise. Our point of departure for this analysis is the equation ;|- 1ated for any noise interpretation, including thedta
obtained by implementing the functional derivative®in- (e Stratonovich interpretatiori8]. However, any further
dicated in Eq.(4), analytic insights require further approximation. We imple-
ment amean-field approximatiom Eq. (5) by replacing the

- N(ei) ' i
(=T(o)| — Lo | +[T (o) H2E(1), (5 average value of the fields of the 2D nearest neighbors of any
#i(t) (¢')( I o H eI, () sitei by the mean-field valuée(t)), that is,
L being the discrete version of the diffusion Laplacian op- 1
erator, >d <|E,> @j(t)—(e(1)). (10)
r _:£ S (o o) ©6) This procedure, which is equivalent to assuming global cou-
?i72d e e pling rather than nearest-neighbor coupling, disregards fluc-

tuations of the neighboring sites around the mean value.

The paper is organized as follows. In Sec. Il we construcSince all sites are then equivalent, the lattice index can be
the mean-field approximation to E@¢5) and establish the dropped and the set of field equations reduces to a single
different phases that may appear in the model. A discussioaquation. However, the unknown mean value of the field
of the possible phase boundaries between these phases apmpears in this equation and must be chassficonsistently
the order of the transitions are presented in Sec. Ill. Th&hus, we obtain a closed approximate version of the problem
structure of the resulting phase diagrams is presented in Segs expressed in the two equations
IV, as is a specific illustration that corroborates our more

general analysis. Sections Il and IV are supplemented by an- ., _ N(e) _ 172
Appendix where we show that a particular type of transition, e()=T(¢) dp FK(e(D) =] |+ [T (@)1,
while it may occur, is necessarily an isolated point in the (11
phase diagram. In Sec. V, simulations of the full model cor-

roborate some of our most striking results. We conclude in (e(1)=(e(1)),. (12)
Sec. VI with a summary and some directions for future re- . .

search. Here(-), stands for a statistical average with respect to the

probability density associated with E¢ll). As t—« we

expect the system to go to a steady state for which a time-

independent description is appropriate. We assume this solu-
We focus our analysis on systems that may undergo Isingion can be found by setting(t) =0 in Eq.(11) and solving

like phase transitions. A convenient order parameter to chafor the now time-independent averagep). The self-

acterize the phase transitions is akin to thagnetization consistency equatioril2) now simply reads(¢)=(¢),,

Il. PHASE TRANSITIONS: MEAN-FIELD ANALYSIS
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where(-), now stands for a statistical average with respectand, consequently,
to the stationaryprobability density

1%
ps 01 ( @) =N((@)T()(* Ve~ @rAIV(e) + (K2)(e) =) ( :iﬂw (;:o))p =0. (18
(13) | o
N({¢)) is the normalization constant, ane=0 (a=1/2) Therefore it follows that
for the Ito (Stratonovich interpretation of the noise. For the lim (@), <(¢), lim (@),>(®), (19
case of a constant coefficiefit=1 it is possible to prove an ()= (p)——o

H theorem ensuring that as time increases the time,Eh ti iiv lies belowab
dependent solution of Eq&L1) and(12) approaches the self- =12 is,(¢),, necessarily lies belowabove (¢) as{¢) goes

consistent solution obtained using the stationary probability® p|.US(minl:IS infinity. . . .
density (13) [11], but such a proo% is not availaglg for the)_} Figure 1 illustrates the resulting possible different phases

general case. It is an interesting question to consider whethd? te:_ms 2; th_?_hpo(SjSIb:]e dsc:_lutlons of the selft-r::onssl_tgncy
the proof can be generalized to the relaxational systems witfdue ion(12). The dashed lines represe(i), the soli

field-dependent coefficients that we are dealing with here. C“TVGS<<P?w and _the self-consistency s.olut|or?s are_their
The mean-field formulation posed above cannot be solve oints of intersection. Our subsequent discussions presume

in full generality either, but it does allow some analytic char-hat the systendefinitelygoes to a stable state. We exclude

acterization of the problem. It is this characterization that we "Unaway” systems that do not fall into this category.

pursue as far as possible.
Note that the disordered solutidsymmetric state(¢) lll. PHASE BOUNDARIES: SECOND- AND FIRST-ORDER
=0 always solves Eq(12). Yet, other solutions such that PHASE TRANSITIONS

(¢)#0 are also possible. We refer to the latter as ordered With Fig. 1 in mind, consider now the possible resulting

squtipns. Note that as a consequence of thg parity of thgenaviors of the order parameter as we transit from one
functionsV(¢) andI'(¢), (¢), is an odd function of¢)  hpase to another by changing a control parameter. Note that
and therefore, if{¢) is a solution of Eq.(12), then S0 iS  he general models) (as well as the mean-field version of
—(). However, both lead to the same value of the ordefe model depends on only two parameters, the coupling
parametem. coefficientK and the noise intensity?, so the control pa-

_ At this point, we must make a distinction betwesblu- ,neter that characterizes a change from one phase to an-
tionsandphasesas determined by the stability of the former. jihar could be either of these twor some combination of

We call adisordered(D) phase a macroscopic state Whereineyy The question then is how the points of intersection in
(¢)=0 is theonly stable solution. If the solutioqp)=0is iy 1 move as one varies a control parameter that takes the
unstable, and only a solution witlp) # 0 is stable, the phase gy gtem from the behavior shown in one panel to that shown
will be called ordered (O). If (¢)=0 coexists with other ;] another.
stable, but ordered, solutions, the phase will be denoted as cgnsider the transition as a system moves from the be-
multistable(M). _ havior shown in panela) of Fig. 1 to that of pane(b). The
Since the solution of the self-consistency equatid®)  \yay this is expected to occur is that the solid curve rotates
determines the accgptable valued of, !t is crucial to un- upward so that in addition to th@p)=0 solution, another
derstand the behavior ¢fp), as a function o). Noting  gqjution emerges at the origin. This second solution then

that moves upward along the diagonal as the control parameter
increases. Thiga)— (b) transition is illustrated in the top
o), _ 2_K(< ) (14) panel of Fig. 2, where the solid lines represent stable solu-
W)y g2 P e \®lph tions and the dotted lines the unstable solutions. The transi-
tion between the disordered and ordered phases is continuous
and applying the generalized Schwarz inequality in the order parametefsecond-order phase transitjorA
transition from pane{b) in Fig. 1 to panelc) would involve
(FP(0) (9%(@)),=(F(@)a( @), I%, (19 the evolution of a kink in the curve that first cuts the diago-

nal at the origin and then moves upward toward the existing
cut. Associated with this there is a change in the curvature of
(), near the origin. This transition is sketched in the middle
panel of Fig. 2, where we show the two nonzero solutions
moving closer together as the control parameter increases.
% The transition between the ordered and multistable phases is
<¢n>p:f dee"ps @i {(¢)) (16)  discontinuougfirst-order phase transitiomnd is expected to
o exhibit hysteresis. The discontinuity is clearly apparent, for
example, in the jump from the disordered branch of the mul-
tistable phase as one decreases the control parameter and this
lim ("), —(e)), (17 branch becomes unstable. Finally, a transition from péaael
(p)—+o to panel(c), the bottom panel of Fig. 2, again involves a

with f(¢)=¢ andg(¢)=1, one concludes that the right-
hand side of Eq(14) is positive, and thereforge), is a
monotonically increasing function dfp). Moreover, taking
the limit of

as(¢)— *oo immediately leads to
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A .
m/| Disorder

mA Order | Multistable
i |
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A
m| Disorder Multistable
|
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FIG. 2. Behavior of the order parameteras a function of a
control parameter CP in the vicinity of a transition point. Transi-
tions between disordered and ordered phases are always second
order(top panel. As shown in the middle and bottom panels, phase
transitions from, or to, multistable phases éréth the exception of
singular points discussed in the Appendiixst order.

trated here, e.g., a transition from order to disorder would
occur as in the top panel but from right to left.

We stress that the transitions between disordered and or-
dered phases are continuous in the order parani@teond-

FIG. 1. Schematic of the possible solutions for the self-Order phase transitionswhereas the transitions from or to

consistency equatiofi2). If the only solution is{¢)=0, panel(a),
the system is in alisorderedphase. In panelb), there is another
solution in addition to the one at)=0. Only the nonzero solution
is stable, so that this representsaderedphase. In panek) there
is an even number of nonzero solutiofere, twg in addition to
the {¢)=0 solution. The{¢)=0 solution is stable, the next inter-

multistable phases are discontinuo(fsst ordey and are
therefore expected to exhibit hysteresis. There may be singu-
lar isolated exceptions to this latter conclusion, as discussed
in the Appendix.

A more quantitative characterization of the phase transi-
tions is possible for those transitions that involve a change in

section is unstable, and the third is again a stable solution. Thehe stability properties of thée),=0 solution, that is, for

system thus exhibitsnultistability in this case, and involves the
coexistence of a disordered and an ordered solution.

phase transitions between disordered and ordered phases, and
between ordered and multistable phasges., the top and
middle panels in Fig. 2 This characterization involves the

change in the curvature near the origin and the evolution of first two nonzero derivatives dfe), with respect to(¢) in
kink that first touches the diagonal at a single nonzero valughe vicinity of the origin. The first derivative provides infor-
that then separates into two as the control parameter irmation about the slope of¢), and the third about the
creases. The transition between disordered and multistabncavity/convexity (¢) , is an odd function of ), so even
phases is again discontinuous. Note that all of these transgerivatives around the origin vanishTransitions between
tions can also proceed in the opposite direction than illusdisordered and ordered phagescond ordgroccur when
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oo

= - 2n+1
W) | yyo ()p= 2, ane1(9)™, 22
()
(93
<@>3" <0. (20) where
Her =0
o 2n+1 .
Transitions between ordered and multistable phéfess or- Aoni1= - f J psi @;(®)) odo
den occur when (2n+ 1)) ypy2ntl o
(23
o)) _,
o ¢) (¢)=0 , Furthermore, a straightforward but tedious calculation leads
3 to the result
I p)
Sp -0 (21) 2n+1
J 2n+1
a2n+1—(2n+1)! 0_2 2n+21

In turn, these derivatives can be expressed in terms of the

cumulants of the probability densipg(¢;0). Weproceed to
establish this relation.

Since(¢),, is an odd function of ¢), its Taylor expansion
around the solutiofg)=0 reads

where C,,, 5 is the (2h+2)th cumulant of the probability
distribution pg(¢;0). Therelation of the cumulants to the
statistical moments of the probability distribution is given by

0 1 0 0 0 0
()9 O 1 0 0 0
0 (¢ 0 1 0 0
Consa=—|(#D0 0 (e 0 1 0 : (25)
0 (N 0  (O)¢H O 1
(D 0 (DN 0 (e O
2n+2

where |- |,,45 indicates the determinant of the {2 2)
X (2n+2) matrix, () the binomial coefficients, and-)q
stands for statistical averages over the probability dens
ps{¢;0). Therefore, around¢)=0 the self-consistency

characterized by the first two nonzero cumulants of the prob-
ability distribution pg(¢;0) as follows:
ity
2

equation reads c _9
2 .
. i1 [ |20 2K » = Second-order phase transition
2
<¢>:<¢>p:<¢>r§0m e Cons2{ @)™, C4=0
(26) (order-disorder boundayy (29
and it then follows that
0_2
Co=o>
o), _2K , 27 " 2K } =First-order phase transition
5<§D> (¢)=0 O C4>0
(93<(P> K\ 3 (order-multistable boundayy  (30)
S =8(—2) C,. (28
(9< (‘D> (¢)=0 o . . .
Transitions between disordered and multistable phases can-

In summary, the boundaries between disordered and onot be characterized in this fashion since they require infor-
dered phases and between ordered and multistable phases aration about ¢), away from(¢)=0.
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IV. OVERALL STRUCTURE OF PHASE DIAGRAMS A series expansion df, useful for large values df follows

Having discussed the possible phase transitions that m|ghtOm an expansion o (¢) arounde=0, which allows us

be observed in the mean-field systéi) and(12), we now o carry out the integral

ask which particular phases might be present for particular =M
values of the control parametéfsando?. In this section we lo(K,o?)= E ( e~ (KIo?)¢? do
present an analytic deduction of the phases present for small —em=0
andl for Iarge vaIue; of the coupling coefficigfit The be- ' © plem 12 2\ mei
havior for intermediate values must be deduced on the basis E (_) 37)
of plausibility arguments that we introduce later. m=0 m!22m | K '
We start by defining
where
2K
®K:al_1:§C2_1- (3D q)(z):&Z(P(@) (39)
ap*

=0
This quantity measures the differences in the slopespdf _ _ ¢ _ .
and(¢), as a function of ¢) near the origin. According to Introducing Eq.(37) into Eq. (36), we obtain the series

the analysis presented in the preceding secfign;> 0 for an

ordered phase el <0 in either disordered or multistable 5 _ i M A Am+1/2), (0?2
regions of the phase diagram. Moreover, the phase bound- an(K,or )_m:() mi 22m K '
aries to or from ordered states are given by the zerds,of (39)

Note that®,=—1, that is,(¢),=0 in the absence of
coupling. Thus{¢)=0 is the only possible solution to the where
self-consistency equatio(l2) in the small-coupling limit,

and the system is disordered in this limAt sufficiently weak nt

coupling the system is therefore always disordered. [2]n= LIO (z+1), [zlo=1 (40)
One can easily check that
6 The moments opg( ¢;0) then read
K
K K=0> 0. (32 i pm . s2\m
o?\"m=0 m! 22m[m+ In K

Thus, aK grows from zero the system advances toward the (@M= (?) — o T Zm (41
ordered phase. This statement does not mean that the system @ g
will actually enter into the ordered phase as the coupling m=0 m! 22m( K)
increases; it simply states the ordering role of weak but in-
creasing coupling. A more convenient expression for E@.1) is obtained by

On the other hand and more interestingly, it is possible tgerforming its Taylor expansion aroundd/K)—0,
investigate the strong-coupling limit as follows. We first in-

troduce the convenient notation , o2\n o2\ d@
(™) = (? [1/2]n+( K) — 5 (3121, [1/2]y)
_ a—1,—(200%)V(e) K>1 8P
D(o)=I'(p)* "€ : (33
0_2 2
> +|— | ————[P@WDO)([5/2],—[1/2
IZH(K!UZ)ZJ gozn(D(qo)e*(K/”z)‘Pz d(P, (34) ( K ) 32((1)(0))2[ ([ ]n [ ]n)
o2\ 3

wheren=0. We can then write all the nonzero moments of —2(®@)2([3/2],—[1/2],)]+O ?) ) .
ps(@;0) as(@®™o=1,,/1o. In particular, the cumulants of
interest here can be written as (42)

Iy Iy |§ The first term in the serie€t2), i.e., up to order ¢%/K)",

Co=1, C4=|——3|—2- (35  leads to the familiar result of applying thsteepest descent

0 0 0 method[12] to |,
Moreover, notice that all the moments can be reduced to the g2\n
calculation ofl since (Mg = (?> [1/2],. (43

K—o
Mo(K,a?) . . i
Lon(K,02)=(—1)"g?"————= (36)  However, this result is not sufficiently accurate to capture
K" enough of the large-coupling behavior ¢$2"), and shed
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light on the behavior of the phase boundaries in that limit.
Keeping up to the next order, that is,

a2\ @
[1/2],+ (?>—([3/2]n_[1/2]n)

= (]

K>1 8
0,2 2
+0 ?) , (44)
one finds for the functio®,
1{0? 0@ o?\?
o3l lgoollx) |

Note that®(©=1 [c.f. Eq.(9)], and therefore the sign &
for large values of the coupling is determined by the sign of
@),

(2) (2) 2 (2)
P =(a—1)I' ——2V . (46) ] ) ]
o FIG. 3. Generic local potentialg;(¢) and field-dependent co-

efficientsI';(¢) as a function of the fielg. The solid lines are for

If ®@)>0 then ®y.,>0 (ordered phage On the other i=1 and the dotted lines far=2. The behavior at the origin of the
hand, if ®®2><0 then®..,<0 (disordered or multistable derivatives ofV(¢) andT'(¢) determine the phase at large values
phas¢. That is, whether or not the system is in an orderedof the coupling(see text
phase depends only on the balance of convexities of the local )
potential and the field-dependent coefficient at the origin. Vi(g)= ¢

Furthermore, since .. ;=0((¢?/K)), which vanishes ne)=5n
asK increases, one knows that for large coupling the system

is “near” a phase boundary of an ordered phase. One can v _ 9’;4_ 9’;2 (49)
gain some insight into the type of transition that might be 2(@)= 4 2
involved by studying the fourth cumulag, [cf. Egs.(29)
and (30)]. Using Eq.(42) in Eqg. (35 and recalling that and
®©®=1 we obtain )
I'y(0) 1+¢
1 0'2 4 0'2 5 1(P)= 40
>1)= —| —| [dW—3(Pp@)2 = 1t+e
Cu(K>1) 16(K) [ 3(d9)) ]+O( K) )
(47)
Ty(e)=—. (50
where 1+e
12 12 Note that the field-dependent coefficidnt favors fluctua-
W= — —(a— 1)Vr@ 4 _4(V(2))2+ (a—1)I'® tions aroundp=*1 while I', leads to the largest fluctua-
o o tions arounde=0 [4]. It is quite straightforward to deter-
mine the sign ofC, on the basis of the derivatives of these
2 functions[one can use the generic forrt¥9) and (50) as a
_ — (22 —_\/4)
+3(a—1D)(a=2)I7) Uzv ’ (48) guide] and compile the following table. We emphasize that

these are results in the strong-coupling linilthe entries in
We thus confirm that, independently of the behavior of thethe table indicate ordefO), disorder(D), and multistability
system at intermediate values of the coupling, for large coutM):
pling the appearance or disappearance of ordered phases as

reflected in the sign of the fourth cumulant depends on the Vy(e) Vy(e)

geometrical properties of (¢) and ofI'(¢) around the ori-

gin. | %) M Oif o2<0oc2
There are basically only two distinct generic types of be- M if 02>g§

havior of these functions around the origin, and therefore

only four possible combinations. The possible types of func- 0 if o?> Ug

tions are shown in Fig. 3, where we have plotted the simplg2(¢) o

: D if o?<o?
representative casg¢$3] 7 ~%
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V(@)

V)

V()

Wi

rates different phases; for the generic models displayec
above, a§=1/(1—a). Note that the noise interpretation
through the value o simply shifts the critical value cxfr§ .

The caseV,, I', with the functions given above has recently
been studied in the context of phase transitions and patter
formation[4,8,9. Also, in agreement with our general analy-
sis it was noted recentl}8] that in that particular case the
noise-induced phase transition is not attributable to the so-
called Stratonovich drift, as is the case in other noise-

[,(9) _mM_

30

20

10

20

=
o

induced phenomend].

We have thus arrived at the generic phase structure for the
mean-field problent11) and(12) in the weak-coupling limit
(the system is disorderg@nd in the strong-coupling limit
(as shown in the tableFor intermediate coupling we are not
able to provide a general quantitative analysis except to note
that if 0>—0, the system is always in a disordef®dhase
since the fluctuations are needed to provide the energy tc

| () IANS

30

20

10

22
(o)

A

induce symmetry breakings.

Despite this difficulty, one can introduce compelling argu-
ments to connect the phase behavior that we have establishedFIG. 4. Mean-field phase diagrams as a function of the local
in these limits, and to arrive at a set of full phase diagramspotentials and field-dependent kinetic coefficients given by Egs.

There are several unknown regions connecting variou$49) and(50). The small open circle in the phase diagram Fgr
known phases at this point. In th&,I'; case we need to andV; where the three phases merge indicates an isolated singular
connect the weak-coupling phase to the strong-coupling critical point (triple point) where a continuous phase transition be-
phase. For th&/,,I"; combination we require a connection tween disordered and ordered phases occsee the Appendix
between thd phase and a® phase if the noise is weak, or The overall struct_ure of the pha_se dlagrams is in perfect agreement
to anM phase if it is strong. With th¥/; ,T", combination the with the schematic structures discussed in the text.

connection needs to be made between the disordered weak- . )
coupling phase and an ordered or a disordered strong:@lly solve the self-consistency equatitt®) and compute

coupling phase depending on the noise intensity. And in th&€ boundaries separating different phases. Recall that the
V,,T', case a connection needs to be established from th&0iS€ interpretation s_lmply shifts the transitions but does not
disordered to the ordered phase. The simplest possible scg@nge the phase diagram structure. We present the results
narios for connections are the following. The simplest confor a=0, that is, the ltointerpretation, for whichoi=1.
nection between disordered phases is simply a disorderethe results are shown in Fig. 4.
phase, i.e., a situation where no phase transition occurs at all. Note that the actual structure of the phase diagrams at
A connection between disordered and ordered phases is magnall and large values of the couplings is perfectly captured
straightforwardly accomplished through a single secondby our analysis. Moreover, the value of the critical noise
order phase transition. Finally, for the connection betweerintensity is 02=1, as predicted. As for the unknown do-
disordered and multistable phases, two different scenariomains shown for intermediate coupling, our arguments about
are most feasible. One possibility is that the connection ishe simplest scenarios agree with the mean-field results. For
mediated through an ordered phase, as follows. As noted iexample, for thev,,I"; combination the appearance of the
Fig. 2, when a multistable region appears from a disorderedultistable phase with increasirg is mediated through an
phase, the unstable solution tends at first to move downwardrdered phase. We point out that for the c®sel ;, there is
as the control parameter increases. If the unstable solutioatriple point where all phases merge. At this critical point a
eventually vanishes, the disordered phase necessarily beentinuous phase transition between disordered and multi-
comes unstable and one necessarily enters an ordered phastble phases occurs. As noted earlier, this behavior is singu-
Such destabilization does not occur if the transition is medilar and isolated. Note also that multistability appears in this
ated by an ordered phase. On the contrary, multistable phasease by means of ROM sequence with increasing coupling
arising fromOM transitions grow more stable as the control K for noise intensities to the right of the triple point. How-
parameter increasdsee Fig. 2 In this case, a feasible se- ever, to the left of the triple point the multistable phase arises
guence would be of the for®OM. On the other hand, a from a DM sequence. Moreover, above the triple point and
direct DM transition may also occur, but only if the initial with increasings?, multistable phases are always destabi-
vanishing tendency of the unstable solution is stabilized afized and followed by an ordered phase, as mentioned above.
the coupling increases. There is evidently an asymptote at=2 for the phase
We can corroborate this scenario by calculating the phasboundary separating the disordered and multistable phases.
diagrams that are obtained from the mean-field approximaHowever, this critical noise intensity is not captured by our
tion for the particular functiong49) and (50). We numeri-  theory since it does not involve slopes and convexitiear
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the origin. Instead, we show below how this second critical
value of the noise intensity can be calculated by analyzingl'*(¢*)V"(¢*)+
the zero-dimensional version of the problem.
A number of other striking features of the phase diagrams =0. (55
are noteworthy. For both/; cases, independently of the
value of the couplingthe system becomes more ordered as Note thate* =0 is always a solution of Eq54) and
the noise intensity increases the case of ', this behavior therefore the disordered solution is stable if
is associated with the destabilization of multistable phases )
and in general suggests that the phenomenon of the so-called o’(l1-a) I"(0)=0 (56)
inverted phase diagrantdepends mainly on the convexity of 2 '
the local potential around the origin. It is also worth noting
the phenomenon of reentrant noise-induced multistability forThis equation corresponds exactly to the stability boundary
the caseV,,I';. If the coupling is greater thak ~10, in-  associated with Eq(46) . In other words,the strongly
creasing the noise intensity causes a transition from an o€oupled system behaves exactly as the uncoupled sylstem
dered phase to a multistable phase. However a further irthe cases/;(¢),I'1(¢) andVi(¢),I'2(¢) the critical value
crease in the noise intensity eventually leads the system baéi the noise intensity that changes the stability of the disor-
to the ordered phase. This behavior resembles the phenorflered solution to an ordered one is exactly as calculated in
enon of reentrance as a function of the intensity of the flucthe coupled systemzZ=1/(1— a).
tuations in other noise-induced phenomg&®d.0]. However, Moreover, our purpose in analyzing the zero-dimensional
in the latter the phase changes are from disordered to ordersystem is also to understand the phase boundary that sepa-
and, for sufficiently intense noise, back to disorder. rates multistable and disordered phases in the ¥asE, in
Zero-Dimensional Analysirevious studies for the par- the spatially extended problem. Recall that in that case the
ticular caseV,, I', [4,8] have revealed that in the case of stability of the disordered solution does not change, and
relaxational flows with field-dependent relaxation coeffi-therefore we are not able to use our mean-field analysis near
cients the mechanism responsible for the phase transition fse disordered state to compute phase boundaries. However,
similar to that which drives the noise-induced transition inwe can use Eqg54) and(55) to support our numerical find-
the manner of Horsthemke-Lefever in zero-dimensional sysigs that indicated that there is a critical noise intensity sepa-
tems[7]. In the zero-dimensional case, noise-induced transirating those two phases. While solving E&4) for solutions
tions are associated with changes in the extrema of the loca* # 0 is rather cumbersome and E§5) does not have an
potential. We present an analysis of the zero-dimensionainalytic solution for those values, it is trivial to solve the
system to compare with some of the results of our mean-fielghroblem numerically. The result agrees perfectly with our
analysis. The zero-dimensional version of E%). reads previous findings: there is an asymptotesdt=2 (Ito) that
corresponds to the critical value of the noise intensity sepa-
(<P) rating disordered and multistable phases.

0’2(1—6!) * " * ’ *\72
—— Al (@) (*) = [T (¢*)]F

V"(0)+

+[T(@)]V%(1), (51)

e(t)=T(¢)| —

V. NUMERICAL SIMULATIONS
that is, the uncoupled version of our original mo@&l. The

stationary probability density now is To check the predictions of the mean-field theory we

present numerical simulations of Ed5) in a two-
dimensional square lattice with nearest-neighbor interac-

psi( @) =Ne~ @rVerl®), 52 °© > . . o
tions, the Itointerpretation of the noise, and periodic bound-

where N is the normalization constant and.x(¢) is the
effectivepotential,

o?’(1-a)

Ver(9)=V(g)+—5—InT(¢). (53

ary conditions. We focus on the cage,I";. This is the most
interesting, previously unexplored, case: a striking effect of
the noise, a noise-induced multistable phase, and an inverted
phase diagram, occur in this case. Note that the ®¥asE,

has been studied recent[¢t], the caseV,,I', presents a
phase diagram with a phenomenology similar to the well-

known model A[1,14], and the cas&/,,I'; presents as its

main feature the same striking phenomenology of noise-

induced multistability as does the cage,I';.

Figure 5 shows the order parametens a function of the

(54) noise intensitys? for a fixed value of the coupling constant,
K=10. The system is seen to explore the three possible
phases, disordered, multistable, and ordered, as the fluctua-

The stability of the equilibria depends on the sign of thetions become stronger. Moreover, the system presents an in-

second derivative of the potential at the equilibrium points. Averted phase diagram where order becomes more prominent

noise-induced transition occurs when there is a change in tha&s the noise is increased. As indicated by the discontinuous

stability of the solutionp*. Therefore, the boundary of sta- behavior of the order parameter, the phase transitions are first

bility is given by Vi4(¢*)=0, that is, order in all cases. To detect the multistable phase and the

The equilibria of the effective potential are given by the con-
dition V 4(¢*) =0, that is,

(11— a)

F((P*)V'(QD*)“‘TF'(@*):O.
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FIG. 6. Schematic behavior of the order parameter as a function
of a control parameter in the vicinity of a continuous disorder-
o multistability phase transition. This kind of behavior is singular and
= isolated in the phase diagram.
of the extended system at large values of the coupling coef-
35 40 ficient is equivalent to the behavior of the uncoupled zero-

dimensional system. Therefore, the mechanism responsible
2 for the phase transitions is similar to the noise-induced tran-
sitions in the manner of Horsthemke-Lefever, and is not at-
FIG. 5. Order parameten as a function of the noise intensity tributable to the Stratonovich drift together with collective
o? for the case/, ,I'; and a fixed value of the coupling=10. The  effects involved in other noise-induced phenom¢6AQ)].
noise term is interpreted in the ltsense. Note that the system Finally, we have performed numerical simulations of a par-
explores the three possible phaséisordered, multistable, and or- ticular case to check the results of the mean-field approxima-
dered as the intensity of the noise is increased. The insets show théion. The numerical results are in qualitative agreement with
steady states of the field for the poimsand B indicated in the the theoretical predictions and reproduce the main features of
figure (see text The noise intensity at these pointsoié~3. the system, most notably, the occurrence of noise-induced
multistability and of an inverted phase diagram indicating
associated hysteresis, we integrated Byunder two differ-  that stronger noise induces greater order.
ent conditions. The initial conditions and the noise realiza- We envision further modifications of these models that
tions are identical in both cases. A difficulty in such simula-would extend the richness of the observed phenomenology.
tions is that it takes an inordinately long time to reach aln particular, including other degrees of freedom and consid-
steady statéeventually the system leaves any steady state iefing different couplings increases the complexity of the
the system is finite, but this time can be made as long agltistability phenomena caused by the noise. Further de-
desired by increasing the size of the systefio overcome grees of freedom could, for example, leadldoking of the
this difficulty, in one case we added a very small externasystem either in an oscillatory modémit cycle) or in a
field that favors the solutiom=0 while in the other we stationary statéfocus depending on the initial conditions.
added one that favors an ordered solution. As soon as stea@@nsidering couplings that favor morphological instabilities
states were reached, the external fields were turned off. THeould lead to pattern formation determined entirely by the
insets of Fig. 5 show, by means of a density plot, the valueditial conditions. Work in these directions is in progress.
of the field in the multistable phase for the poiAtandB for
Whic_h 0?~3. The scale qf the density plots i§ also presentgd ACKNOWLEDGMENTS
and is the same for both insets. The insets highlight the strik-
ing feature of the noise-induced multistability and show the This work was partially supported by the Engineering Re-
two possible states within the multistable region. search Program of the Office of Basic Energy Sciences at the
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86ER13606, by a grant from tidéew Del Amo Programby
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We have presented a detailed study of phase transitions fapain Grant No. BFM2001-0291.
models with field-dependent relaxation coefficients. By
means of a_mean-fiel_d approximation_ in_ combination with APPENDIX: SINGULAR TRANSITION
other analytical techniques and plausibility arguments sup-
ported by particular examples, we have elucidated the phase In Fig. 2 and the discussion surrounding it we noted that
diagrams that can be found in such models. We stress thattith the exception of singular points in the parameter space,
our methods can easily be applied to a variety of other sysphase transitions from disorder to multistability are first or-
tems. Moreover, we have demonstrated that disorderder (discontinuous In this appendix we expand on this as-
multistability continuous phase transitions are singular pointsertion. By “singular” we mean that if there is a point
in the phase diagram, and that the phases for large values (x[ri ,K,) in the phase diagram where a continuous transition
the coupling are determined by geometrical features of théetween disorder and multistability exists, then no neighbor-
local potential and of the field-dependent coefficient in theing points in the phase diagram can present the same transi-
vicinity of the origin. We have also showed that the behaviortion. In other words, continuous disorder-multistability phase
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transitions arasolated critical pointsin the phase diagram,
and there is no plausible continuous functiofu?) connect-
ing them.

Figure 6 shows the behavior of the order parametes a

PHYSICAL REVIEW &9, 011102 (2004

Now, assume the existence of the critical poimﬁ(K*).
We investigate the requirements for a neighboring point
(ai+sgz,K*+sK) to also be associated with a disorder-
multistability phase transition. A straightforward calculation

function of a control parameter in the vicinity of a continu- |eads to the following condition to be satisfied by.:
ous disorder-multistability phase transition. Note that for that

behavior to happen, all three roots of the self-consistency

equation must vanish exactly at the critical value of the con-

trol parameter. Moreover, the convexity ), must also

.2 (@*)o(V(¢))o—(2*V(¢))o]=0. (A2)

change sign at exactly that value. If such a critical point

(afc ,K,) exists, it must satisfy the conditions

’

1 o2
S (o=3| 2]
2 2\K ) = . g (A1)
C4=0 <¢4>0:Z(_*> ‘

\

These requirements fulfill the Schwarz inequality, Etp),

This can in general only be satisfiedsif2=0. As forey, it
must satisfy

(6™0( 20— (¢° 3(o)’_
ex((@M) ol )o—(¢ >o)+8|<2 | =0 (A3

Again, the only acceptable solution to this equatiorejs
=0. Therefore, if there exists a critical point in the phase
diagram where a continuous disorder-multistability phase

and we must therefore conclude that such a critical point igransition occurs, then that point is singular in the sense that

possible.

it is isolated.
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